18,599 research outputs found

    Modulated phases and devil's staircases in a layered mean-field version of the ANNNI model

    Get PDF
    We investigate the phase diagram of a spin-1/21/2 Ising model on a cubic lattice, with competing interactions between nearest and next-nearest neighbors along an axial direction, and fully connected spins on the sites of each perpendicular layer. The problem is formulated in terms of a set of noninteracting Ising chains in a position-dependent field. At low temperatures, as in the standard mean-feild version of the Axial-Next-Nearest-Neighbor Ising (ANNNI) model, there are many distinct spatially commensurate phases that spring from a multiphase point of infinitely degenerate ground states. As temperature increases, we confirm the existence of a branching mechanism associated with the onset of higher-order commensurate phases. We check that the ferromagnetic phase undergoes a first-order transition to the modulated phases. Depending on a parameter of competition, the wave number of the striped patterns locks in rational values, giving rise to a devil's staircase. We numerically calculate the Hausdorff dimension D0D_{0} associated with these fractal structures, and show that D0D_{0} increases with temperature but seems to reach a limiting value smaller than D0=1D_{0}=1.Comment: 17 pages, 6 figure

    Numerical modeling of surface runoff and erosion due to moving rainstorms at the drainage basin scale

    Get PDF
    A physically-based distributed erosion model (MEFIDIS) was applied to evaluate the consequences of storm movement on runoff and erosion from the Alenquer basin in Portugal. Controlled soil flume laboratory experiments were also used to test the model. Nine synthetic circular storms were used, combining three storm diameters (0.5, 1 and 2 times the Alenquer basin's axial length) with three speeds of storm movement (0.5, 1 and 2 m/s); storm intensities were synthesized in order to maintain a constant rainfall depth of 50 mm. The model was applied to storms moving downstream as well as upstream along the basin's axis. In all tests, downstream-moving storms caused significantly higher peak runoff (56.5%) and net erosion (9.1%) than did upstream-moving storms. The consequences for peak runoff were amplified as the storm intensity increased. The hydrograph shapes were also different: for downstream-moving storms, runoff started later and the rising limb was steeper, whereas for upstream moving storms, runoff started early and the rising limb was less steep. Both laboratory and model simulations on the Alenquer basin showed that the direction of storm movement, especially in case of extreme rainfall events, significantly affected runoff and soil loss.http://www.sciencedirect.com/science/article/B6V6C-4K7WTYF-3/1/05f00859098982a6ae43cfee9cc48fe

    A new method for quantification of hepatobiliary scintigraphy using 99mTc-mebrofenin. A comparative study

    Get PDF
    A method based upon the application of mathematical techniques of deconvolution on the classical compartmental model for the quantitative study of liver function from hepatobiliary scintigraphy using 99mTc-mebrofenin data is proposed. The theory in which the method is based upon is presented and a comparison with a published methodology of obtaining the hepatic extraction after scintigraphic sudies has been performed using the results on 36 rats studies obtained with the two methods. A highly significant correlation between the two techniques was verified. The characteristics of the two methodologies, the proposed one based upon a theoretical approach and the other one on an empirical approximation are discussed. Comments are made on the interest and limitations of the presented technique that may be an useful tool for the evaluation of hepatic insufficiency
    corecore